CSCI-1200 Data Structures — Fall 2021
Homework 2 — Spelling Bee Classes

In this assignment you will practice using C++ classes to parse and compute statistics from the New York
Times online word game, Spelling Bee: https://www.nytimes.com/puzzles/spelling-bee.
Please carefully read the entire assignment before beginning your implementation.

Every day the New York Times Games editors make a new Spelling
Bee game consisting of 7 letters, with one letter highlighted in gold Spelling Bee september 10, 2021
as the center letter. To play the game, you need to build English e by Sam Ezersy
words from these letters, subject to the following constraints:

e Words must contain at least 4 letters. M

e Words must include the center letter.

e Letters can be used more than once. L E

e The solution list excludes proper nouns and words considered

obscure or offensive.

Your game score is computed as follows: C 0
e 4-letter words are worth 1 point each.

e Longer words earn 1 point per letter. P

e Each game includes at least one “pangram” which uses every
letter. These words are worth an extra 7 points!

In the example above, “tool”, “poet”, and “motel” are valid words (worth 1, 1, and 5 points, respectively).
“top” is not a valid word (it is too short) and “cope” is not a valid word (it does not use the center letter ‘t’).
This game contains 1 pangram, “complete”, which uses all 7 letters and is worth 8+7 = 15 points. The New
York Times Games editors have declared the game for this date to have 56 official answers. The maximum
score (sum of the points for those answers) is 226.

September 10, 2021 An archive of all past Spelling Bee games, the solutions, and some interesting
[tlcelmop statistics is available at https://nytbee.com/. We have scraped this data and
prepared a variety of input files of different sizes for this assignment. Each input

zi;; ect file contains 1 or more Spelling Bee games and all of the answer words for each
collet game. For example, a portion of the input file sample.txt, which contains the
colt game above, is shown on the left.

ZZE;Z te Each game contained in an input file starts with a row of dashes, then the date,
complete then the 7 letters, with the center letter first, surrounded by square brackets.
compote After another row of dashes, the valid answer words are listed. This file, and
coopt other sample input files, are available on the course webpage.

coot

cote File I/O and Command Line Arguments

elect

electee Your program will run with three command-line arguments. The first is the
emote input file containing one or more games as described above. The second is the
1ZZ:m°te output file where you will write the computed statistics. The third argument will
Lotto indicate which data table should be printed. Valid options for the third argument
meet are: —-game_stats, --word_stats, --letter_stats, or --custom_stats. For
melt example, here is a valid command line to your program:

mete

ete ./bee_stats.out small_test.txt output_small_test_games.txt --game_stats

https://www.nytimes.com/puzzles/spelling-bee
https://nytbee.com/

Statistics Collected and Output

To illustrate each of the output formats, we’ll use the small_test.txt input file example. This file contains
3 games. These dates have the lowest ever maximum scores (and similarly the fewest number of solution
words) of all Spelling Bee games archived in the https://nytbee.com/ website.

When --game_stats is specified, your program should create a table of data with one row for each game
including the date, letters, maximum score, number of pangrams, total number of words, and breakdown of
the words for each game by length. The first game in the table below has 15 4-letter words, 5 5-letter words,
and 1 8-letter word.

date letters score pangrams #words 4 5 6 7 8
December 14, 2019 [u]l abc f k1l 55 1 21 15 5 1
May 24, 2020 [i]lklnrwy 52 1 21 16 3 2
May 17, 2019 [1]l abkruw 50 1 21 16 4 1

The games in the table should be sorted first by number of pangrams (words using all of the 7 different
letters), with the highest number of pangrams first. Games with the same number of pangrams should be
ordered by maximum score, with the highest score first. And games that also tie in score should be sorted
chronologically, with the most recent game last. You should strive to match the provided sample output
exactly — see the example code from lecture and look at STL iomanip library references.

When --word_stats is specified, your program should create a table with all of the words contained in all
of the games in the input file. The row for each word will include the count of how many games in the input
contain the word as a solution. Furthermore, that count should be broken into subcounts of how many of
those games had each letter a-z as the center letter. This table should be sorted first by the number of
times the word appears in the file. And secondly alphabetically by word. Here is the top portion of the
--word_stats output:

word count a b cde f ghdi j k 1 mnopgr s t uv w x y z
bulb 2 1 1
bulk 2 1 1
bull 2 1 1
luau 2 1 1
lull 2 1 1
lulu 2 1 1
aural 1 1

balk 1 1

ball 1 1

bawl 1 1

blab 1 1

bluff 1 1
etc.

When --letter_stats is specified, your program should create a table with a row for each letter a-z and
record the count of the number of times that letter was the center letter for a game in the input file and the
average maximum score for those games. And it should also count the number of games that include that
letter as one of the non-center letters, and the average maximum score for those games.

letter #center avg center #other avg other

a 2 52.5
b 52.5
c 1 55.0

https://nytbee.com/

d

e

£ 1 55.0
g

h

i 1 52.0

J

k 3 52.3
1 1 50.0 2 53.5
m

n 1 52.0
(o]

p

q

r 2 51.0
S

t

u 1 55.0 1 50.0
v

w 2 51.0
X

v 1 52.0
z

Finally when the --custom_stats option is specified, it is a chance for you to be creative. You will design
and implement some other statistic from the Spelling Bee Game data. An important task for this part of the
assignment is to write a concise description (~ 100-200 words) of your new statistic. Put this description in
your README. txt along with any other notes for the grader.

You are encouraged to modify the provided datasets and create new datasets to test and debug your code, and
to demonstrate your custom statistic. Paste an interesting sample of the output from your custom statistic
output into your README.txt. Extra credit will be awarded to custom statistics that require non-trivial
extensions beyond the required portions of the assignment.

Useful Code

To control the formatting of your tables, you’ll want to read up on the various STL iomanipulators:
std: :setw(int), std: :setprecision(int), and std::fixed. And don’t forget about the sort function
that can be used to order the contents of a vector.

You should be able to parse the input files using only the >> input stream function for int, STL string, and
char used in Lecture 3. You should not need getline or eof. Your code should not depend on the presence
or location of newlines within the input file. Be sure to study the File Parsing Example with Different Data
Types from the course webpage.

Program Requirements & Submission Details

Your program should involve the definition of at least two classes that have their own .h and .cpp files,
named appropriately. You should also continue your practice of STL vector, STL string, and STL
input /output/file streams. You may not use other STL containers that we have not yet covered in lecture
yet (e.g., map or set) — we will cover these other data structures in a few weeks, and we will also discuss
their structural differences and performance advantages in great detail.

Be sure to read “Good Programming Practices” as you put the finishing touches on your solution. You must
do this assignment on your own, as described in the “Collaboration Policy & Academic Integrity” statement.
If you did discuss this assignment, problem solving techniques, or error messages, etc. with anyone, please
list their names in your README. txt file.

http://www.cs.rpi.edu/academics/courses/fall21/csci1200/programming_information.php
http://www.cs.rpi.edu/academics/courses/fall21/csci1200/programming_information.php
http://www.cs.rpi.edu/academics/courses/fall21/csci1200/good_programming.php
http://www.cs.rpi.edu/academics/courses/fall21/csci1200/academic_integrity.php

